4,176 research outputs found

    Reduced mechanical efficiency in left-ventricular trabeculae of the spontaneously hypertensive rat.

    Get PDF
    Long-term systemic arterial hypertension, and its associated compensatory response of left-ventricular hypertrophy, is fatal. This disease leads to cardiac failure and culminates in death. The spontaneously hypertensive rat (SHR) is an excellent animal model for studying this pathology, suffering from ventricular failure beginning at about 18 months of age. In this study, we isolated left-ventricular trabeculae from SHR-F hearts and contrasted their mechanoenergetic performance with those from nonfailing SHR (SHR-NF) and normotensive Wistar rats. Our results show that, whereas the performance of the SHR-F differed little from that of the SHR-NF, both SHR groups performed less stress-length work than that of Wistar trabeculae. Their lower work output arose from reduced ability to produce sufficient force and shortening. Neither their heat production nor their enthalpy output (the sum of work and heat), particularly the energy cost of Ca(2+) cycling, differed from that of the Wistar controls. Consequently, mechanical efficiency (the ratio of work to change of enthalpy) of both SHR groups was lower than that of the Wistar trabeculae. Our data suggest that in hypertension-induced left-ventricular hypertrophy, the mechanical performance of the tissue is compromised such that myocardial efficiency is reduced

    Unchanged content of oxidative enzymes in fast-twitch muscle fibers and V˙O2 kinetics after intensified training in trained cyclists.

    Get PDF
    PublishedJournal ArticleThe present study examined if high intensity training (HIT) could increase the expression of oxidative enzymes in fast-twitch muscle fibers causing a faster oxygen uptake (V˙O2) response during intense (INT), but not moderate (MOD), exercise and reduce the V˙O2 slow component and muscle metabolic perturbation during INT. Pulmonary V˙O2 kinetics was determined in eight trained male cyclists (V˙O2-max: 59 ± 4 (means ± SD) mL min(-1) kg(-1)) during MOD (205 ± 12 W ~65% V˙O2-max) and INT (286 ± 17 W ~85% V˙O2-max) exercise before and after a 7-week HIT period (30-sec sprints and 4-min intervals) with a 50% reduction in volume. Both before and after HIT the content in fast-twitch fibers of CS (P < 0.05) and COX-4 (P < 0.01) was lower, whereas PFK was higher (P < 0.001) than in slow-twitch fibers. Content of CS, COX-4, and PFK in homogenate and fast-twitch fibers was unchanged with HIT. Maximal activity (μmol g DW(-1) min(-1)) of CS (56 ± 8 post-HIT vs. 59 ± 10 pre-HIT), HAD (27 ± 6 vs. 29 ± 3) and PFK (340 ± 69 vs. 318 ± 105) and the capillary to fiber ratio (2.30 ± 0.16 vs. 2.38 ± 0.20) was unaltered following HIT. V˙O2 kinetics was unchanged with HIT and the speed of the primary response did not differ between MOD and INT. Muscle creatine phosphate was lower (42 ± 15 vs. 66 ± 17 mmol kg DW(-1)) and muscle lactate was higher (40 ± 18 vs. 14 ± 5 mmol kg DW(-1)) at 6 min of INT (P < 0.05) after compared to before HIT. A period of intensified training with a volume reduction did not increase the content of oxidative enzymes in fast-twitch fibers, and did not change V˙O2 kinetics.The study was supported by Team Danmark (Danish Elite Sport Organization)

    Quantum teleportation with nonclassical correlated states in noninertial frames

    Full text link
    Quantum teleportation is studied in noninertial frame, for fermionic case, when Alice and Bob share a general nonclassical correlated state. In noninertial frames two fidelities of teleportation are given. It is found that the average fidelity of teleportation from a separable and nonclassical correlated state is increasing with the amount of nonclassical correlation of the state. However, for any particular nonclassical correlated state, the fidelity of teleportation decreases by increasing the acceleration.Comment: 10 pages, 3 figures, expanded version to appear in Quantum Inf. Proces

    Ab-initio Quantum Enhanced Optical Phase Estimation Using Real-time Feedback Control

    Full text link
    Optical phase estimation is a vital measurement primitive that is used to perform accurate measurements of various physical quantities like length, velocity and displacements. The precision of such measurements can be largely enhanced by the use of entangled or squeezed states of light as demonstrated in a variety of different optical systems. Most of these accounts however deal with the measurement of a very small shift of an already known phase, which is in stark contrast to ab-initio phase estimation where the initial phase is unknown. Here we report on the realization of a quantum enhanced and fully deterministic phase estimation protocol based on real-time feedback control. Using robust squeezed states of light combined with a real-time Bayesian estimation feedback algorithm, we demonstrate deterministic phase estimation with a precision beyond the quantum shot noise limit. The demonstrated protocol opens up new opportunities for quantum microscopy, quantum metrology and quantum information processing.Comment: 5 figure

    Death, dying and informatics: misrepresenting religion on MedLine

    Get PDF
    BACKGROUND: The globalization of medical science carries for doctors worldwide a correlative duty to deepen their understanding of patients' cultural contexts and religious backgrounds, in order to satisfy each as a unique individual. To become better informed, practitioners may turn to MedLine, but it is unclear whether the information found there is an accurate representation of culture and religion. To test MedLine's representation of this field, we chose the topic of death and dying in the three major monotheistic religions. METHODS: We searched MedLine using PubMed in order to retrieve and thematically analyze full-length scholarly journal papers or case reports dealing with religious traditions and end-of-life care. Our search consisted of a string of words that included the most common denominations of the three religions, the standard heading terms used by the National Reference Center for Bioethics Literature (NRCBL), and the Medical Subject Headings (MeSH) used by the National Library of Medicine. Eligible articles were limited to English-language papers with an abstract. RESULTS: We found that while a bibliographic search in MedLine on this topic produced instant results and some valuable literature, the aggregate reflected a selection bias. American writers were over-represented given the global prevalence of these religious traditions. Denominationally affiliated authors predominated in representing the Christian traditions. The Islamic tradition was under-represented. CONCLUSION: MedLine's capability to identify the most current, reliable and accurate information about purely scientific topics should not be assumed to be the same case when considering the interface of religion, culture and end-of-life care

    The Virtual Physiological Human: Ten Years After

    Get PDF
    Biomedical research and clinical practice are struggling to cope with the growing complexity that the progress of health care involves. The most challenging diseases, those with the largest socioeconomic impact (cardiovascular conditions; musculoskeletal conditions; cancer; metabolic, immunity, and neurodegenerative conditions), are all characterized by a complex genotype–phenotype interaction and by a “systemic” nature that poses a challenge to the traditional reductionist approach. In 2005 a small group of researchers discussed how the vision of computational physiology promoted by the Physiome Project could be translated into clinical practice and formally proposed the term Virtual Physiological Human. Our knowledge about these diseases is fragmentary, as it is associated with molecular and cellular processes on the one hand and with tissue and organ phenotype changes (related to clinical symptoms of disease conditions) on the other. The problem could be solved if we could capture all these fragments of knowledge into predictive models and then compose them into hypermodels that help us tame the complexity that such systemic behavior involves. In 2005 this was simply not possible—the necessary methods and technologies were not available. Now, 10 years later, it seems the right time to reflect on the original vision, the results achieved so far, and what remains to be done

    Abdominal Adipose Tissue Is Associated With Alterations in Tryptophan-Kynurenine Metabolism and Markers of Systemic Inflammation in People With Human Immunodeficiency Virus

    Get PDF
    Background: While both adipose tissue accumulation and tryptophan metabolism alterations are features of HIV infection, their interplay is unclear. We investigated associations between abdominal adipose tissue, alterations in kynurenine pathway of tryptophan metabolism, and systemic inflammation in people with HIV (PWH). / Methods: 864 PWH and 75 uninfected controls were included. Plasma samples were collected and analyzed for kynurenine metabolites, neopterin, high-sensitivity CRP (hs-CRP), lipids. Regression models were used to test associations in PWH. / Results: PWH had higher kynurenine-to-tryptophan ratio than uninfected individuals (p-value < 0.001). In PWH, increase in waist-to-hip ratio was associated with higher kynurenine-to-tryptophan ratio (p-value 0.009) and quinolinic-to-kynurenic acid ratio (p-value 0.006) and lower kynurenic acid concentration (p-value 0.019). Quinolinic-to-kynurenic acid ratio was associated with higher hs-CRP (p-value < 0.001) and neopterin concentrations (p-value <0.001), while kynurenic acid was associated with lower hs-CRP (p-value 0.025) and neopterin concentrations (p-value 0.034). / Conclusion: In PWH increase in abdominal adipose tissue was associated with increased quinolinic-to-kynurenic acid ratio, suggesting activation of pro-inflammatory pathway of kynurenine metabolism, with reduction of anti-inflammatory molecules, and increase in systemic inflammation. Our results suggest dysregulation of kynurenine metabolism associated with abdominal fat accumulation to be a potential source of inflammation in HIV infection

    Geodesic motion in the space-time of a cosmic string

    Full text link
    We study the geodesic equation in the space-time of an Abelian-Higgs string and discuss the motion of massless and massive test particles. The geodesics can be classified according to the particles energy, angular momentum and linear momentum along the string axis. We observe that bound orbits of massive particles are only possible if the Higgs boson mass is smaller than the gauge boson mass, while massless particles always move on escape orbits. Moreover, neither massive nor massless particles can ever reach the string axis for non-vanishing angular momentum. We also discuss the dependence of light deflection by a cosmic string as well as the perihelion shift of bound orbits of massive particles on the ratio between Higgs and gauge boson mass and the ratio between symmetry breaking scale and Planck mass, respectively.Comment: 20 pages including 14 figures; v2: references added, discussion on null geodesics extended, numerical results adde

    Muscles in “Concert”: Study of Primary Motor Cortex Upper Limb Functional Topography

    Get PDF
    BACKGROUND: Previous studies with Transcranial Magnetic Stimulation (TMS) have focused on the cortical representation of limited group of muscles. No attempts have been carried out so far to get simultaneous recordings from hand, forearm and arm with TMS in order to disentangle a 'functional' map providing information on the rules orchestrating muscle coupling and overlap. The aim of the present study is to disentangle functional associations between 12 upper limb muscles using two measures: cortical overlapping and cortical covariation of each pair of muscles. Interhemispheric differences and the influence of posture were evaluated as well. METHODOLOGY/PRINCIPAL FINDINGS: TMS mapping studies of 12 muscles belonging to hand, forearm and arm were performed. Findings demonstrate significant differences between the 66 pairs of muscles in terms of cortical overlapping: extremely high for hand-forearm muscles and very low for arm vs hand/forearm muscles. When right and left hemispheres were compared, overlapping between all possible pairs of muscles in the left hemisphere (62.5%) was significantly higher than in the right one (53.5% ). The arm/hand posture influenced both measures of cortical association, the effect of Position being significant [p = .021] on overlapping, resulting in 59.5% with prone vs 53.2% with supine hand, but only for pairs of muscles belonging to hand and forearm, while no changes occurred in the overlapping of proximal muscles with those of more distal districts. CONCLUSIONS/SIGNIFICANCE: Larger overlapping in the left hemisphere could be related to its lifetime higher training of all twelve muscles studied with respect to the right hemisphere, resulting in larger intra-cortical connectivity within primary motor cortex. Altogether, findings with prone hand might be ascribed to mechanisms facilitating coupling of muscles for object grasping and lifting -with more proximal involvement for joint stabilization- compared to supine hand facilitating actions like catching. TMS multiple-muscle mapping studies permit a better understanding of motor control and 'plastic' reorganization of motor system
    corecore